Site‐specific and endothelial‐mediated dysfunction of the alveolar‐capillary barrier in response to lipopolysaccharides

نویسندگان

  • Harshavardhan Janga
  • Liam Cassidy
  • Fanlu Wang
  • Dietmar Spengler
  • Stefanie Oestern-Fitschen
  • Martin F Krause
  • Andreas Seekamp
  • Andreas Tholey
  • Sabine Fuchs
چکیده

Infectious agents such as lipopolysaccharides (LPS) challenge the functional properties of the alveolar-capillary barrier (ACB) in the lung. In this study, we analyse the site-specific effects of LPS on the ACB and reveal the effects on the individual cell types and the ACB as a functional unit. Monocultures of H441 epithelial cells and co-cultures of H441 with endothelial cells cultured on Transwells® were treated with LPS from the apical or basolateral compartment. Barrier properties were analysed by the transepithelial electrical resistance (TEER), by transport assays, and immunostaining and assessment of tight junctional molecules at protein level. Furthermore, pro-inflammatory cytokines and immune-modulatory molecules were evaluated by ELISA and semiquantitative real-time PCR. Liquid chromatography-mass spectrometry-based proteomics (LS-MS) was used to identify proteins and effector molecules secreted by endothelial cells in response to LPS. In co-cultures treated with LPS from the basolateral compartment, we noticed a significant reduction of TEER, increased permeability and induction of pro-inflammatory cytokines. Conversely, apical treatment did not affect the barrier. No changes were noticed in H441 monoculture upon LPS treatment. However, LPS resulted in an increased expression of pro-inflammatory cytokines such as IL-6 in OEC and in turn induced the reduction of TEER and an increase in SP-A expression in H441 monoculture, and H441/OEC co-cultures after LPS treatment from basolateral compartment. LS-MS-based proteomics revealed factors associated with LPS-mediated lung injury such as ICAM-1, VCAM-1, Angiopoietin 2, complement factors and cathepsin S, emphasizing the role of epithelial-endothelial crosstalk in the ACB in ALI/ARDS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P 61: MicroRNA as a Therapeutic Tool to Prevent Blood Brain Barrier Dysfunction in Neuroinflammation

Endothelial cells present in brain are unique and differ from other peripheral tissues in a number of ways, which ensures specific brain endothelial barrier properties. Endothelial dysfunction is the earliest event in the initiation of vascular damage caused by inflammation. Various microRNAs (miRNA) have been discovered in different cellular components of the blood bran barrier (BBB). miRNAs a...

متن کامل

Dexamethasone Attenuates VEGF Expression and Inflammation but Not Barrier Dysfunction in a Murine Model of Ventilator–Induced Lung Injury

BACKGROUND Ventilator-induced lung injury (VILI) is characterized by vascular leakage and inflammatory responses eventually leading to pulmonary dysfunction. Vascular endothelial growth factor (VEGF) has been proposed to be involved in the pathogenesis of VILI. This study examines the inhibitory effect of dexamethasone on VEGF expression, inflammation and alveolar-capillary barrier dysfunction ...

متن کامل

c-Abl mediated tyrosine phosphorylation of paxillin regulates LPS-induced endothelial dysfunction and lung injury.

Paxillin is phosphorylated at multiple residues; however, the role of tyrosine phosphorylation of paxillin in endothelial barrier dysfunction and acute lung injury (ALI) remains unclear. We used siRNA and site-specific nonphosphorylable mutants of paxillin to abrogate the function of paxillin to determine its role in lung endothelial permeability and ALI. In vitro, lipopolysaccharide (LPS) chal...

متن کامل

Protective effect of Growth Hormone-Releasing Hormone agonist in bacterial toxin-induced pulmonary barrier dysfunction

RATIONALE Antibiotic treatment of patients infected with G(-) or G(+) bacteria promotes release of the toxins lipopolysaccharide (LPS) and pneumolysin (PLY) in their lungs. Growth Hormone-releasing Hormone (GHRH) agonist JI-34 protects human lung microvascular endothelial cells (HL-MVEC), expressing splice variant 1 (SV-1) of the receptor, from PLY-induced barrier dysfunction. We investigated w...

متن کامل

Histone deacetylase inhibitors prevent pulmonary endothelial hyperpermeability and acute lung injury by regulating heat shock protein 90 function.

Transendothelial hyperpermeability caused by numerous agonists is dependent on heat shock protein 90 (Hsp90) and leads to endothelial barrier dysfunction (EBD). Inhibition of Hsp90 protects and restores transendothelial permeability. Hyperacetylation of Hsp90, as by inhibitors of histone deacetylase (HDAC), suppresses its chaperone function and mimics the effects of Hsp90 inhibitors. In this st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2018